Technische Universität Wien
> Zum Inhalt
2012-03-05 [

Florian Aigner

 | Büro für Öffentlichkeitsarbeit ]

Metalle für sauberes Wasser

Katalysatoren aus zwei verschiedenen Metallen können helfen, schädliche Nitrate im Trinkwasser abzubauen. Durch Forschungen an der TU Wien kann dieser Prozess nun erstmals im Detail verstanden werden.

Karin Föttinger am Infrarotspektrometer

Noelia Barrabes

Zwei verschiedene Metalle sorgen für sauberes Wasser

Schema des Versuchsaufbaus: Messen mit Synchrotronstrahlung.

Nitrate sind ein ernstes Problem für unser Trinkwasser. Durch Überdüngung in der Landwirtschaft kann ihre Konzentration im Wasser auf ein gesundheitsgefährdendes Niveau ansteigen. Nitrate können die Krebsrate erhöhen oder tödliche Herzfehler bei Kindern auslösen („Blue Baby Syndrome“). Am Institut für Materialchemie der TU Wien wird eine Möglichkeit erforscht, die schädlichen Substanzen einfach und rasch wieder aus dem Wasser zu entfernen: Durch spezielle Katalysatoren sollen die Nitrate in molekularen Stickstoff und Wasser umgewandelt werden. Wie dieser Ablauf genau vor sich geht, konnte nun in spektroskopischen Untersuchungen untersucht werden.

Zwei Metalle gegen Nitrat
In der Trinkwasseraufbereitung oder in der Abwasserklärung werden Nitrate heute hauptsächlich auf biologische Weise aus dem Wasser entfernt: Man verwendet Bakterien, die das Nitrat abbauen. Allerdings brauchen diese Bakterien konstante Umgebungsbedingungen um zuverlässig arbeiten zu können. Karin Föttinger vom Institut für Materialchemie untersucht ganz andere Methoden der Wasser-Denitrierung: Sie verwendet bimetallische Katalysatoren – Kombinationen aus einem edlen und einem unedlen Metall. „In Spanien gibt es bereits erste Wasseraufbereitungsanlagen, in denen diese Methode in großem Maßstab angewandt wird“, sagt Karin Föttinger. Allerdings ist man bei dieser Technologie bis heute eher auf Versuch und Irrtum angewiesen, viele Details der beteiligten chemischen Reaktionen werden nämlich jetzt erst genau untersucht.

Nitrat abbauen, N2 und Wasser erzeugen
Die Metalle bringt man als Nanopartikel auf einen Träger auf, um die aktive Oberfläche möglichst groß werden zu lassen. Verwendet wird Kupfer und ein Edelmetall – entweder Palladium oder Platin. „Wichtig ist, dass die beiden Metalle in engen Kontakt gebracht werden“, erklärt Föttinger, „am besten in Form einer Legierung.“ Das Kupfer wird aufoxidiert – es holt sich Sauerstoffatome des Nitrats (NO3), das  damit zu Nitrit (NO2) umgewandelt wird. Gleichzeitig wird molekularer Wasserstoff (H2) dazugeleitet, der vom Edelmetall aktiviert wird. Dadurch wird das Nitrit schließlich am Edelmetall weiterreduziert. „Die einzelnen Teilprozesse müssen so abgestimmt werden, dass als Endprodukt Stickstoff und Wasser entsteht“, erklärt Karin Föttinger. Der Prozess darf nicht an einem Punkt stehenbleiben, an dem noch schädliches Nitrit vorhanden ist, er darf aber auch nicht so weit getrieben werden, dass sich der Stickstoff am Ende mit zu viel Wasserstoff verbindet und Ammonium (NH4) entsteht.

Röntgenstrahlen und Infrarot
Mit verschiedenen Methoden untersuchte das Team um Karin Föttinger und Marie Curie Stipendiatin Noelia Barrabes am Institut für Materialchemie, wie diese Reaktionen im Detail ablaufen: Mit einem Infrarot-Spektrometer wurde gemessen, welche Spezies von Stickstoffverbindungen an der Katalysatoroberfläche vorliegen. Um die Rolle des Kupfers zu untersuchen, führte das TU-Team hochauflösende Röntgenabsorptions-Messungen am Paul Scherrer Institut in der Schweiz durch. Wichtig ist, in welcher Form das Kupfer während des Prozesses vorliegt: Es kann als reines Kupfer (Cu), oxidiert (Cu2O oder CuO) oder als Legierung mit Platin oder Palladium vorkommen. „Wir konnten uns direkt unter Reaktionsbedingungen ansehen, in welchen Verbindungen das Kupfer zu den bestimmten Zeitpunkten während der Reaktion vorliegt, diese quantifizieren und mit der gleichzeitig mitgemessenen katalytischen Aktivität korrelieren“, berichtet Karin Föttinger. „Dadurch haben wir nun einen ersten Beweis, dass metallisches Kupfer tatsächlich die entscheidende Rolle für den ersten limitierenden Schritt bei diesem Katalyse-Prozess spielt.“

Durch diese Untersuchungen lässt sich nun auch erklären, warum Palladium einen besseren Erfolg bringt als Platin: „Das oxidierte Kupfer muss möglichst rasch und effizient wieder zum aktiven metallischen Zustand regeneriert werden. Im Palladium kann Wasserstoff auch im Inneren des Kristallgitters eingelagert sein“, sagt Karin Föttinger. „Dieses Hydrid kann dann helfen, Kupfer zu regenerieren.“ Wenn man die Katalyse-Prozesse im Detail versteht, können sich die Methoden weiter verbessern lassen – für eine einfache und sichere Aufbereitung von sauberem, gesunden Trinkwasser.



Die Forschungsarbeit entstand im Rahmen des EU Marie Curie Projektes „Envirocathydro“ und des Spezialforschungsbereichs FOXSI (Functional Oxide Surfaces and Interfaces). http://foxsi.tuwien.ac.at/


Fotodownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/nitrat/ 

Nachlese: Vom Verlag RSC Publishing wurde nun ein kürzlich erschienenes Paper der Forschungsgruppe als „Hot Article“ ausgezeichnet: http://blogs.rsc.org/cy/2012/01/27/hot-article-catalytic-clean-up/


Rückfragehinweis:
Karin Föttinger
Institut für Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165110
karin.foettinger@tuwien.ac.at 

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
+43-1-58801-41027
florian.aigner@tuwien.ac.at

Logo Materials & Matter

Logo Energy & Environment
„Materials & Matter“ und „Energy & Environment“ sind – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies sowie Information & Communication Technology – Forschungsschwerpunkte der Technischen Universität Wien. Forschung an neuartigen Materialien hilft dabei, Umweltprobleme zu lösen.


TU Wien - Mitglied der TU Austria
www.tuaustria.at