Technische Universität Wien
> Zum Inhalt
2014-08-04 [

Florian Aigner

 | Presseaussendung 85/2014 ]

Neues Material ermöglicht ultradünne Solarzellen

An der TU Wien gelang es, zwei unterschiedliche Halbleitermaterialien zu kombinieren, die jeweils aus nur drei Atomlagen bestehen. Dadurch ergibt sich eine vielversprechende neue Struktur für Solarzellen.

Marco Furchi, Thomas Müller, Andreas Pospischil (v.l.n.r.)

Marco Furchi, Thomas Müller, Andreas Pospischil (v.l.n.r.)

Das Schichtsystem der Solarzelle: innen die beiden Halbleiter, darüber und darunter befinden sich elektrische Kontakte.

Das Schichtsystem der Solarzelle: innen die beiden Halbleiter, darüber und darunter befinden sich elektrische Kontakte.

Durchsichtige, hauchdünne, biegsame Solarzellen könnten bald Wirklichkeit werden. An der TU Wien gelang es Thomas Müller und seinen Mitarbeitern Marco Furchi und Andreas Pospischil, eine neuartige Halbleiterstruktur aus zwei ultradünnen Atomschichten herzustellen, die sich ausgezeichnet für den Bau von Solarzellen eignet.

Schon vor einigen Monaten war es an der TU Wien gelungen, eine ultradünne Schicht des photoaktiven Kristalls Wolframdiselenid zu produzieren. Durch die erfolgreiche Kombination mit einer zweiten Schicht aus Molybdändisulfid entstand nun ein Material, das großflächig als Solarzelle einsetzbar ist. Das Forschungsteam erhofft sich, damit eine neue Solarzellentechnologie zu begründen.

Zweidimensionale Schichten

Ultradünne Materialien, die nur aus einer oder wenigen Atomlagen bestehen, sind in der Materialwissenschaft derzeit ein blühendes Hoffnungsgebiet. Begonnen hat es mit Graphen, das aus einer einzelnen Lage von Kohlenstoff-Atomen besteht. Wie auch zahlreiche andere Forschungsgruppen auf der Welt hat auch der Elektrotechniker Thomas Müller und sein Team am Institut für Photonik der TU Wien durch die Arbeit mit Graphen herausgefunden, wie man mit ultradünnen Schichten umgeht, sie bearbeitet und verbessert. Dieses Wissen lässt sich nun auch auf andere Materialien übertragen.

„Solche zweidimensionalen Kristalle haben oft völlig andere elektronische Eigenschaften als eine dickere, dreidimensionale Version desselben Materials“, erklärt Thomas Müller. Seinem Team gelang es ihm nun erstmals, zwei verschiedene ultradünne Halbleiterschichten aneinanderzufügen und ihre Eigenschaften zu untersuchen.

Zwei Schichten mit unterschiedlichen Aufgaben

Wolframdiselenid ist ein Halbleiter, der aus drei Atomschichten besteht. In der Mitte befindet sich eine Lage von Wolfram-Atomen, die oberhalb und unterhalb der Schicht durch Selen-Atome verbunden sind. „Dass Wolframdiselenid geeignet ist, elektrischen Strom aus Licht zu erzeugen, konnten wir bereits vor einigen Monaten zeigen“, sagt Thomas Müller. Allerdings müsste man beim Bau einer Solarzelle aus reinem Wolframdiselenid in Mikrometer-engen Abständen winzige Elektroden in das Material einbauen. Durch die Kombination mit einem weiteren Material (Molybdändisulfid, das ebenso aus drei Atomlagen besteht) ist das nun nicht mehr nötig. Somit lässt sich das Schichtsystem als großflächige Solarzelle einsetzen.

Wenn Licht auf ein photoaktives Material fällt, dann werden einzelne Elektronen von ihrem Platz gelöst. Übrig bleibt ein bewegliches Elektron und ein Loch an der Stelle, wo sich das Elektron vorher befunden hat. Sowohl das Elektron als auch das Loch kann im Material herumwandern, zum Stromfluss können beide allerdings nur dann beitragen, wenn sie voneinander getrennt werden, sodass sie sich nicht wieder miteinander vereinen.

Um diese Rekombination von negativ geladenen Elektronen mit positiv geladenen Löchern zu verhindern, kann man entweder Elektroden verwenden, über die man die Ladungsträger absaugt, oder man benutzt dafür eine zweite Materialschicht. „Die Löcher bewegen sich im Wolframdiselenid, die Elektronen hingegen wandern über das Molybdändisulfid ab“, sagt Thomas Müller. Damit ist die Rekombinations-Gefahr gebannt.

Um diesen Effekt zu ermöglichen, müssen die Energien der Elektronen in den beiden Schichten optimal angeglichen werden, was im Experiment durch ein elektrostatisches Feld geschieht. Florian Libisch und Prof. Joachim Burgdörfer vom Institut für Theoretische Physik der TU Wien konnten mit Computersimulationen berechnen, wie sich die Energie der Elektronen in den beiden Materialien ändert und bei welchen Spannungen eine optimale Ausbeute an elektrischer Leistung zu erwarten ist.

Atom an Atom: enger Kontakt durch Hitze
„Eine der größten technischen Herausforderungen war es, die beiden Materialien atomar flach aufeinander aufzubringen“, sagt Thomas Müller. „Wenn sich zwischen den beiden Schichten noch andere Moleküle verstecken, sodass kein direkter Kontakt gegeben ist, dann funktioniert die Solarzelle nicht.“ Gelungen ist dieses Kunststück schließlich, indem man beide Schichten zunächst in Vakuum ausheizte und dann in gewöhnlicher Atmosphäre zusammenfügte. Wasser zwischen den beiden Lagen konnte durch nochmaliges Ausheizen aus dem Schichtsystem entfernt werden.

Das neue Material lässt einen großen Teil des Lichts durch, der absorbierte Anteil wird in elektrische Energie umgewandelt. Man könnte es etwa auf Glasfassaden einsetzen, wo es Licht durchlassen und trotzdem Strom erzeugen würde. Weil es nur aus wenigen Atomlagen besteht, ist das Material extrem leicht (300 m2 des Films wiegen etwa ein Gramm) und sehr flexibel. Um eine höhere Energieausbeute auf Kosten reduzierter Transparenz zu erreichen arbeitet das Team gegenwärtig daran, mehr als zwei Schichten aufeinander zu stapeln.

Die Arbeit ist nun im Fachjournal „Nano Letters“ erschienen.
Frei zugängliche arxiv-Version


Bilderdownload

Rückfragehinweis:
Prof. Thomas Müller
Institut für Photonik
Technische Universität Wien
Gusshausstraße 27-29, 1040 Wien
T: +43-1-58801-38739
thomas.mueller@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Logo Materials & MatterMaterials & Matter ist – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies, Information & Communication Technology sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Geforscht wird von der Nanowelt bis hin zur Entwicklung neuer Werkstoffe für großvolumige Anwendungen. Die Forschenden arbeiten sowohl theoretisch, beispielsweise an mathematischen Modellen im Computer, wie auch experimentell an der Entwicklung und Erprobung innovativer Materialien.


TU Wien - Mitglied der TU Austria
www.tuaustria.at