Technische Universität Wien
> Zum Inhalt
2012-09-13 [

Florian Aigner

 | Presseaussendung 64/2012 ]

Sommerregen funktioniert anders als gedacht

Wo regnet es nach einem heißen Sommertag? Neue Satelliten-Untersuchungen zeigen, dass die Bodenfeuchte dabei eine ganz andere Rolle spielt als bisher gedacht.

Lokaler Regen braut sich zusammen (Mali, Sahel). Bild: F. Guichard & L. Kergoat, AMMA project, CNRS copyright.

Über trockenen Gebieten kommt es eher zu Wärmegewittern als in feuchten Gegenden – das konnte ein internationales Forschungsteam nach Auswertung von Satellitendaten nun zeigen. Bisherige Computermodelle hatten das Gegenteil vorausgesagt – sie müssen nun neu überdacht werden. Die Ergebnisse der Studie wurden im Fachjournal „Nature“ publiziert. An dem Forschungsprojekt war auch die TU Wien beteiligt – gemeinsam mit dem Centre for Ecology and Hydrology (Wallingford, UK), der Freien Universität Amsterdam und dem Meteorologiezentrum CNRM in Toulouse.

Von unten nach oben statt quer übers Land
Schlechtwetterfronten, die vom Meer über den Kontinent ziehen, können große Gebiete mit Regen eindecken. Ganz anders entstehen die klassischen Sommergewitter, die oft auf kleinere Regionen beschränkt bleiben: Anstatt quer übers Land ziehen hier die Luftmassen vom heißen Boden senkrecht nach oben und bilden hohe Niederschlagswolken, die schließlich abregnen – man spricht von „konvektivem Niederschlag“. Oft ist diese Art von Regen am Nachmittag eines heißen Tages zu beobachten.

Bringt Feuchtigkeit noch mehr Regen?

„Man könnte glauben, dass über feuchten Böden das Wasser eher verdunstet und zur Bildung von konvektiven Niederschlägen beiträgt“, sagt Wouter Dorigo vom Institut für Photogrammetrie und Fernerkundung der TU Wien, einer der Studienautoren. „Das würde bedeuten, dass es zu einer positiven Rückkoppelung kommt: Dort wo es feucht ist, regnet es umso mehr, wo es trocken ist, bleibt auch weiterhin der Regen eher aus.“ In Wirklichkeit scheint es aber umgekehrt zu funktionieren: „Wir haben Daten verschiedener Satelliten ausgewertet, mit denen die Bodenfeuchte auf der ganzen Welt auf einer Größenskala von fünfzig bis hundert Kilometern gemessen wurde. Diese Daten weisen darauf hin, dass konvektiver Niederschlag eher über trockenen Böden auftritt“, erklärt Wouter Dorigo.

Die gemessenen Daten stehen damit im Widerspruch zu bisherigen Computermodellen. Eine endgültige Erklärung für diesen Effekt muss erst gefunden werden. „Die Luft über trockenen Böden heizt sich leichter auf, dadurch könnte es wohl zu einer intensiveren vertikalen Luftbewegung kommen“, vermutet Dorigo. Bisher können die Computermodelle den komplexen Prozess aber noch nicht detailliert genug beschreiben.

Mikrowellen aus dem Weltraum
Die Bodenfeuchte kann weltweit mit Hilfe von Satelliten gemessen werden: Man greift dabei auf Mikrowellenstrahlung zurück, die im Gegensatz zu sichtbarem Licht die Wolkendecke problemlos durchdringen kann. Entweder wird die natürliche Mikrowellenstrahlung der Erde gemessen und daraus auf die Bodenfeuchte geschlossen (passive Messung), oder der Satellit sendet gezielt Mikrowellenpulse auf die Erde und misst, wie stark dieser Puls von der Erdoberfläche reflektiert wird (aktive Messung). An der TU Wien werden diese Daten dann verarbeitet und in Bodenfeuchtigkeits-Werte umgerechnet.

Originalpublikation:
Taylor, C.M., De Jeu, R.A.M., Guichard, F.,  Harris, P.P., Dorigo W.A. (2012), Afternoon rain more likely over drier soils, Nature, doi:10.1038/nature11377.

Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/sommerregen/ 

Rückfragehinweis:
Dr. Wouter Dorigo
Institut für Photogrammetrie
und Fernerkundung
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-12243
Mobil: +43-650-7426622
wouter.dorigo@tuwien.ac.at

Aussender:
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T.: +43-1-58801-41027
pr@tuwien.ac.at

TU Wien - Mitglied der TU Austria
www.tuaustria.at